商业模式发展至今,已经不仅仅是销售能够制造的产品,而是制造能够销售的产品。企业的业务一定建立在有某种需求的用户上,所以市场拓张的落脚点都会落到用户的行为分析上。只有更好地了解用户习惯、用户偏好、用户画像才能更好地创新或改进或迭代产品,而数据分析能够帮助我们做到这一点。
从另一方面来说,随着科技的发展,产品和技术终将被淘汰,但基本的市场需要从来都是在的,会一直延续下去,只是用户的要求变高了或者改变了,所以数据分析也会不断反复验证、更新迭代、学习进步,虽然最近“数据杀熟”的概念出现的比较多,我们不去做过多解读,但终归了解你的用户还是有必要的。
01
用户行为分析的前提
用户行为分析是对用户在产品使用上产生的行为及行为背后的数据进行分析,通过构建用户行为模型和用户画像,来改变产品决策,实现精细化运营,指导业务增长。
在产品运营过程中,对用户行为的数据进行收集、存储、跟踪、分析与应用等,可以找到实现用户自增长的病毒因素、群体特征与目标用户。从而深度还原用户使用场景、操作规律、访问路径及行为特点等。
所以数据分析和用户行为分析的基本前提是,你要对公司的业务非常地了解和熟悉,有四个简单的问题可以帮助理解业务:
我们的业务是什么?(定位)
谁是我们的客户?(市场细分)
顾客看重什么?(竞争优势)
我们的业务应该是什么?(愿景及目标)
02
用户行为分析的目的
对于互联网金融、新零售、供应链、在线教育、银行、证券等行业的产品而言,以数据为驱动的用户行为分析尤为重要。用户行为分析的目的是:推动产品迭代、实现精准营销,提供定制服务,驱动产品决策。主要体现在以下几个方面:
对产品而言,帮助验证产品的可行性,研究产品决策,清楚地了解用户的行为习惯,并找出产品的缺陷,以便需求的迭代与优化。
对设计而言,帮助增加体验的友好性,匹配用户情感,细腻地贴合用户的个性服务,并发现交互的不足,以便设计的完善与改进。
对运营而言,帮助裂变增长的有效性,实现精准营销,全面地挖掘用户的使用场景,并分析运营的问题,以便决策的转变与调整。
03
如何做用户行为分析
用户行为分析,说白了就是从各个维度去看用户对于产品在某些指标上的反馈。
关键词1:维度—用户分类
维度指的就是用户分类,虽然公司在产品定位和市场细分阶段已经对用户群体有清晰的定位,但是在产品运营阶段,对使用产品的用户群体还需要更加细分。
「按照个人属性或标签划分」
比如:性别、年龄、地区、学历等也可以为用户贴上标签,如星座、行业、职业、消费能力、支付偏好等
「按照用户使用产品的生命周期划分」——同期群划分
用户使用产品的生命周期一般是:免费试用、付费使用、结束使用。同期群划分指的是按用户初始使用产品的时间将用户划分。产品总是在更新迭代中的,对不同的同期群的影响是不一样的。。
「按照用户使用产品的频率划分」——活跃度
根据活跃度,可将用户划分为:新增用户、普通用户、活跃用户、核心用户、流失用户。活跃度的指标需根据不同类型业务在不同发展阶段进行自我定义。
举例,假如是微信等社交类应用,可能指的是日均使用时长;假如是外卖等 O2O 类应用,可能是周均使用次数;假如是喜马拉雅内容类应用,可能指的是日均听音频的时间。
「按照用户价值划分」——RFM 模型及其衍生
PFM 模型通过衡量客户价值和客户创造价值能力来进行用户分类,有三个维度:
R:最近一次消费 Recency
F:消费频率 Frequency
M:消费金额 Money
可分为 5 类:
「基于业务模型的指标」——AARRR 漏斗模型
AARRR 对应移动应用生命周期的 5 个重要环节
A:Acquisition 获取用户A:Activation 提高活跃度R:Retention 提高留存率R:Revenue 获取收入R:Refer 自传播
金字塔模型,就是根据这个流程来给用户分类的一个模型。
于是这五层的用户分类,对于每一类都有不同的需求:新用户我们希望他下载,那么给新手福利;下载用户希望他们使用,那么给予傻瓜式的操作引导;而使用的用户又希望他多来,常来,建立信任,那么就要有不断的刺激和优化。而兴趣用户,当然希望他付费了,自然促销是常用手段。至于付费用户,那么服务肯定要做好,希望人家二次购买,三次购买,甚至推荐给其他人。
正态分布模型
当用户运维的资源更加的粗放,而且资源非常有限的时候,就可以用正态分布模型。比如二八法则就是一种正态分布的形式,80%处于曲线的平均值附近,而剩下的20%才是利润的来源。
正态分布模型,就是在两个维度比如利润贡献和人数两个维度进行建模,你会发现提供利润最多的那几个客户是少数,因为运营成本和突发状况造成没钱赚反而亏本的也是少数,而留下的大多数利润都是在一个恒定值附近的。
那么根据这三种情况,我们就可以来分配运维的资源了,重点维护高利润用户,同时也要核心关注不给利润但是占据大部分公司资源的客户,要舍弃。而中间大多数在恒定值附近的客户,则要进行标准化服务,节省资源,让边际成本降低。
「按照用户使用业务场景划分」
举例,对于 O2O 类应用,可划分为:买家用户、卖家用户、快递。买家和卖家和快递用户可以继续按照前面所讲的分类模式继续细分。
关键词2:指标
指标就是衡量基准,是一个明确的数据。
「基本财务指标」
财务指标就是企业的经营利润、销售总额、经营成本等。具体的分析可按照下图思路:
「基于业务模型的指标」——AARRR 漏斗模型
AARRR 对应移动应用生命周期的 5 个重要环节
A:Acquisition 获取用户A:Activation 提高活跃度R:Retention 提高留存率R:Revenue 获取收入R:Refer 自传播
具体每一步的目的和相关指标如下图:
「基于业务模型的指标」——长漏斗模型
根据不同业务模型,企业分析的指标模型也不一致。针对电商类应用,更多的是使用长漏斗模型来分析业务,如下图所示:
需要注意:
1、商业的不同阶段的用户行为分析的重点不同。RFM,更多是基于成交金额的优化,提升用户的LTV的分类方式。金字塔模型,则是基于多层次数据稳定增长,形成健康AARRR体系循环的分类方式。而正态分布,则更加偏向于粗放式运营,在维护用户资源有限的情况下,调用有限资源维护长尾客户的分类方式。
2、选择出具有指导意义的指标。指标最关键的含义就是,一定要有指导意义,有利于作出决策。比如双十一那天凌晨,需要实时监测交易额,1小时后率先完成10亿,但 “10亿” 其实就是个数字,不具任何参考意义,但只要说第一个小时相比去年增长了40%,但预计增长60%,就非常有参考意义,此时可以去看为什么没有达成,作出是否需要给用户在设置提醒之类的决策。(数据只是举例,不具有参考意义)
关键词3:反馈
针对指标的反馈主要有四个方面:
变化,随时间波动如何;
分布,在不同区域之间,不同产品之间,不同用户群体之间的占比如何;
对比,产品之间的对比;
预测,基于过去表现分析预测未来表现;
所以在根据业务表现研究用户行为分析时,可结合以上维度、指标、反馈三点对业务现状和背后原因进行深层挖掘。用户行为分析对企业来说主要有以下几点应用:
根据不同用户行为及表现,提出精准营销建议,实现营销利益最大化;
研究学习优质用户的行为模式及共同特征,引导更多用户发展为优质用户;
有利于发现产品机会点,并利用A/B测试等测试的参考来改进或迭代产品;
04
行为路径分析
行为路径分析就是分析用户在产品使用过程中的访问路径。通过对行为路径的数据分析,可以发现用户最常用的功能和使用路径。并从页面的多维度分析,追踪用户转化路径,提升产品用户体验。
不管是产品冷启动,还是日常活动营销,做行为路径分析首先要梳理用户行为轨迹。用户行为轨迹包括认知、熟悉、试用、使用到忠诚等。轨迹背后反映的是用户特征,这些特征对产品运营有重要的参考价值。
以用户投标的行为路径为例,我们可以记录用户从注册、认证、开户、充值到投资的行为轨迹。通过分析用户的这些行为轨迹数据,来验证访问路径是否和预期指标的一致。
在分析用户行为路径时,我们会发现用户实际的行为路径与期望的行为路径有一定的偏差。这个偏差就是产品可能存在的问题,需要及时对产品进行优化,找到缩短路径的空间。
福格模型分析
福格行为模型是用来研究用户行为原因的分析模型,福格行为模型用公式来简化就是B=MAT,即B=MAT。B代表行为,M代表动机,A代表能力,T代表触发。它认为要让一个行为发生,必须同时具备三个元素:动机、能力和触发器。因此可以借助福格行为模型来评估产品的合理性和能否达到预期目标。
以活动分享为例,投资人完成活动分享的行为,也是必须满足福格行为模型的三个元素。即通过邀请有奖让用户有足够的内驱力,自主性的分享活动给好友,且活动专题页有醒目的按钮和文案提示激励用户完成任务。
用户行为分析模型其实也是一种AISAS模型,即代表了用户从注册、认证、开户、充值到投资整个过程表现:Attention注意、Interest兴趣、Search搜索、Action行动、Share分享,也影响了用户行为决策。
用户行为分析模型是一个完整的行为模型,可以对产品的功能进行验证,也是一个闭环的分析体系,可以对数据的结果进行分析。总而言之,用户的核心是洞察心理,行为的本质是挖掘需求,分析的目的是增长业务。
来源:客户忠诚度研究
以上是关于用户增长师的相关信息,以供大家查看了解。想要了解更多用户增长师信息,第一时间了解用户增长师相关资讯,敬请关注唯学网用户增长师栏目,如有任何疑问也可在线留言,小编会为您在第一时间解答!